W35. Let $S_n(x)$ be polynomial defined by recurrence

$$S_{n+1} - 2(x+1)S_n + S_{n-1} = 2x, n \in \mathbb{N}$$

with initial conditions $S_0 = 0, S_1 = x$. Prove that

$$S_n(x) \leq (1 + nx)^n - 1, x \geq 0, n \in \mathbb{N};$$

Arkady Alt

Solution by proposer.

Let $T_n(x) := S_n(x-1) + 1$ then $S_n(x-1) \le (1 + n(x-1))^n - 1, x \ge 1, n \in \mathbb{N} \iff$

(1)
$$T_n(x) \leq (1 + n(x - 1))^n, x \geq 1, n \in \mathbb{N}$$

and
$$S_{n+1}(x-1) - 2xS_n(x-1) + S_{n-1}(x-1) = 2(x-1) \Leftrightarrow$$

$$T_{n+1}(x) - 1 - 2x(T_n(x) - 1) + T_n(x) - 1 = 2(x - 1) \Leftrightarrow$$

$$T_{n+1}(x) = 2x \cdot T_n(x) - T_{n-1}(x), n \in \mathbb{N}.$$

Since
$$S_0(x) = 0$$
 and $S_1(x) = x \Leftrightarrow S_0(x-1) = 0$ and $S_1(x-1) = x-1$

then
$$T_0(x) = 1$$
 and $T_1(x) = S_1(x-1) + 1 = x - 1 + 1 = x$.

That is $T_n(x)$ is the First Kind Chebyshev's Polynomial.

Since
$$(1 + n(x - 1))^n = \sum_{k=0}^n n^k \binom{n}{k} (x - 1)^k$$
 then for the proof of inequality (1)

convenient to use Taylor's representation of $T_n(x)$:

$$T_n(x) = \sum_{k=0}^{\infty} \frac{T_n^{(k)}(1)}{k!} (x-1)^k$$
, because suffice to prove that $\frac{T_n^{(k)}(1)}{k!} \leq \left(\frac{n}{k}\right) n^k \Leftrightarrow$

(2)
$$T_n^{(k)}(1) \le n^k \cdot \frac{n!}{(n-k)!}$$
 where $k = 0, 1, ..., n$.

For calculation $T_n^{(k)}(1)$ we will partake derivative equation which define n-th Chebyshev's Polynomial $T_n(x)$:

(3)
$$(1-x^2)T_n''(x) - xT_n'(x) + n^2T_n(x) = 0.$$

In the supposition that for arbitrary $k=1,2,\ldots,n-1$ consecutive derivatives $T_n^{(k+1)}(x),T_n^{(k)}(x),T_n^{(k-1)}$ satisfy to correlation

$$(1-x^2)T_n^{(k+1)}(x) - a_k x T_n^{(k)}(x) + b_k T_n^{(k-1)}(x) = 0$$
 we obtain that

$$-2xT_n^{(k+1)}(x) + (1-x^2)T_n^{(k+2)}(x) - a_kT_n^{(k)}(x) - a_kxT_n^{(k+1)}(x) + b_kT_n^{(k)}(x) = 0 \Leftrightarrow$$

$$(1-x^2)T_n^{(k+2)}(x) - (a_k+2)xT_n^{(k+1)}(x) + (b_k-a_k)T_n^{(k)}(x) = 0.$$

Thus we have $a_{k+1} = a_k + 2$ and $b_{k+1} = b_k - a_k$ where $a_1 = 1$ and $b_1 = n^2$.

Hence,
$$a_k = 2k - 1$$
 and $b_{k+1} - b_1 = \sum_{i=1}^k (b_{i+1} - b_i) = -\sum_{i=1}^k (2i - 1) = -k^2$ and

therefore
$$a_{k+1} = 2k + 1, b_{k+1} = n^2 - k^2$$
.

So, for $T_n^{(k+2)}(x)$, $T_n^{(k+1)}(x)$, $T_n^{(k)}$ we obtain following correlation

(4)
$$(1-x^2)T_n^{(k+2)}(x) - (2k+1)xT_n^{(k+1)}(x) + (n^2-k^2)T_n^{(k)}(x) = 0$$
, where

k = 0, 1, ..., n - 1 and in particularly for x = 1 we have:

(5)
$$(2k+1)T_n^{(k+1)}(1) = (n^2 - k^2)T_n^{(k)}(1) \Leftrightarrow \frac{T_n^{(k+1)}(1)}{T_n^{(k)}(1)} = \frac{n^2 - k^2}{2k+1}.$$

For k = 0 inequality (2) obviously holds because $T_n^{(0)}(1) = T_n(1) = 1$.

Since
$$\frac{T_n^{(k+1)}(1)}{T_n^{(k)}(1)} \le \frac{n^{k+1} \cdot \frac{n!}{(n-k-1)!}}{n^k \cdot \frac{n!}{(n-k)!}} \iff \frac{n^2 - k^2}{2k+1} \le n(n-k) \iff$$

 $n + k \le (2k + 1)n$ then from of Math. Induction's supposition that

$$T_n^{(k)}(1) \le n^k \cdot \frac{n!}{(n-k)!}$$

we immediately obtain that $T_n^{(k+1)}(1)=T_n^{(k)}(1)\cdot \frac{T_n^{(k+1)}(1)}{T_n^{(k)}(1)}\leq$

$$n^{k} \cdot \frac{n!}{(n-k)!} \cdot n(n-k) = n^{k+1} \cdot \frac{n!}{(n-(k+1))!}$$

Equality in (1) occurs iff n = 1 and don't holds if n > 1. (because

$$T_n(x) = (1 + n(x - 1))^n, x \ge 1 \iff T_n^{(k)}(1) = n^k \cdot \frac{n!}{(n - k)!}, k = 0, 1, ..., n \iff T_n(1) = 1$$

and
$$\frac{T_n^{(k+1)}(1)}{T_n^{(k)}(1)} = n(n-k), k = 1, ..., n-1 \iff \frac{n^2 - k^2}{2k+1} = n(n-k), k = 1, ..., n-1 \iff$$

$$n + k = (2k + 1)n, k = 1, ..., n - 1 \iff (2n - 1)k = 0$$
).